If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+32x-45=0
a = 64; b = 32; c = -45;
Δ = b2-4ac
Δ = 322-4·64·(-45)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-112}{2*64}=\frac{-144}{128} =-1+1/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+112}{2*64}=\frac{80}{128} =5/8 $
| 5y-4+y+12=180 | | 3k+17=26 | | 13k+17=26 | | 7g+6=20 | | V(x)=(11-2x)(8.5-2x)(x) | | 7v+56=1-4v | | 12÷2(6-7×4)×2=x | | Nx750=15000 | | 10-y2=2 | | 9x-25=3x-36 | | 3x^+9=72 | | 9w^2+3=252 | | 10x+13=5x+53 | | 9w^2=249 | | 11-q/2=3q+1/2 | | -8x+8=-5x+5 | | 2x+11=x+18 | | 2(4m-25)=7(m+7) | | 4v-3=75 | | 2v-12=7(v+4) | | 5y(y-1)-2=0 | | 9(v-6)=4v-9 | | ⅘v-3=7 | | 4x-45=-3(x+1) | | 5(x+8)=-6x+7 | | 25/21=40/x | | -13=5(y+2/5) | | 2x-6/15=0 | | -20=5(u-8)-3u | | 36=5(w+3)+2w | | -12=5v+8(v-8) | | x=10x-4x-5+(2x-25)= |